11011二进制转化为十进制
11011二进制转化为十进制为27。把二进制数转化为十进制数,只要依次累加各位数字上的数×该数位的权重,即可得到结果。所以11011转化为十进制的计算公式为1×2^0+1×2^1+0×2^2+1×2^3+1×2^4,结果为27。
1、二进位计数制仅用两个数码:0和1,所以,任何具有二个不同稳定状态的元件都可用来表示数的某一位。而在实际上具有两种明显稳定状态的元件很多。例如,氖灯的“亮”和“熄” ;开关的“开” 和 “关”;电压的“高” 和“低”、“正”和 “负”;纸带上的“有孔”和“无孔”;电路中的“有信号” 和 “无信号”; 磁性材料的南极和北极等等,不胜枚举。
利用这些截然不同的状态来代表数字,是很容易实现的。不仅如此,更重要的是两种截然不同的状态不单有量上的差别,而且是有质上的不同。这样就能大大提高机器的抗干扰能力,提高可靠性。而要找出一个能表示多于二种状态而且简单可靠的器件,就困难得多了。
2、二进位计数制的四则运算规则十分简单:而且四则运算最后都可归结为加法运算和移位,这样,电子计算机中的运算器线路也变得十分简单了。不仅如此,线路简化了,速度也就可以提高。这也是十进位计数制所不能相比的。
3、在电子计算机中采用二进制表示数可以节省设备。可以从理论上证明,用三进位制最省设备,其次就是二进位制。但由于二进位制有包括三进位制在内的其他进位制所没有的优点,所以大多数电子计算机还是采用二进制。此外,由于二进制中只用二个符号 “ 0” 和“1”,因而可用布尔代数来分析和综合机器中的逻辑线路。 这为设计电子计算机线路提供了一个很有用的工具。
4、二进制的符号“1”和“0”恰好与逻辑运算中的“对”(true)与“错”(false)对应,便于计算机进行逻辑运算。
二进制是在数学和数字电路中以2为基数的记数系统,是以2为基数代表系统的二进位制。这一系统中,通常用两个不同的符号0(代表零)和1(代表一)来表示。发现者是莱布尼茨。
数字电子电路中,逻辑门的实现直接应用了二进制,现代的计算机和依赖计算机的设备里都使用二进制。每个数字称为一个比特。