无理数是什么 无理数和有理数有什么区别
无理数是指实数范围内不能表示成两个整数之比的数。无理数最早由毕达哥拉斯学派弟子希伯索斯发现,他提出“万物皆为数”的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
无理数和有理数有什么区别
1、概念不同:有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2、范围不同:有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。
3、性质不同:有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数的比率或分数构成的数字。
无理数分为哪两大类
无理数分为正无理数和负无理数。无理数是相对于有理数的另一类,所以它就是不能够表示成分数形式的数,即无限不循环小数。这类数字没有规律,所以只能按照正负符号去分类。