《对数函数及其性质》教学反思
作为一名数学教师来说不仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。下面是小编给大家分享的《对数函数及其性质》教学反思,供大家参考,阅读。希望大家能够喜欢!
《对数函数及其性质》教学反思1
计算在生活中随处可见,在小学,计算教学更是贯穿于数学教学的全过程,可见计算教学的重要性。但是小学生计算的正确率常受到学生的兴趣、态度、意志、习惯等因素的影响。在做计算题时,学生普遍有轻视的态度,一些计算题并不是不会做,而是由于注意力不够集中、抄错题、运算粗心、不进行验算造成的。在计算教学中,我比较重视培养学生良好的计算能力,我是从以下几个方面进行的,特提出来与大家分享。
一、培养学生计算的兴趣。
“兴趣是最好的老师”,在计算教学中,首先要激发学生的计算兴趣,让学生乐于学、乐于做,教会学生用口算、笔算和计算工具进行计算,并掌握一定的计算方法,达到算得准、快的目的。
讲究训练形式,激发计算兴趣。为了提高学生的计算兴趣,寓教于乐,结合每天的教学内容,可以让学生练习一些口算。在强调计算的同时,讲究训练形式多样化。如:用游戏、竞赛等方式训练;用卡片、小黑板视算,听算;限时口算,自编计算题等。多种形式的训练,不仅提高学生的计算兴趣,还培养学生良好的计算习惯。
以中外数学家的典型事例或与课堂教学内容有关的小故事激发兴趣。教学中,适时地列举中外数学家的典型事例,或者是以学生喜闻乐见的小故事来增添课堂气氛,吸引学生注意力,可以激发学生对数学学习的爱好和兴趣,使学生集中精神进行计算,提高课堂上的学习效果。
二、培养坚强的意志。
培养学生坚强的意志对学生能够长期进行准确、快速的计算,会产生良好的促进作用。
每天坚持练一练。计算教学中,口算是笔算的基础,可以根据每天的教学内容适时适量地进行一些口算训练,在我们班每天20题的口算训练已成为学生的习惯。通过长期坚持的训练,既培养了学生坚强的意志,又提高了学生的计算能力。
针对小学生只喜欢做简单的计算题,不喜欢做或做不对稍复杂的计算、简算等题目的弱点,教学中要善于发现小学生的思维障碍,克服影响学生正确计算的心理因素。可以通过各种方法进行练习,如:“趣题征解”、“巧算比赛”、鼓励学生一题多解等形式培养学生的意志。
三、培养学生良好的计算习惯。
良好的计算习惯,直接影响学生计算能力的形成和提高。因此,教师要严格要求学生做到认真听课,认真思索,认真独立的完成作业,并做到先复习后练习,练习中刻苦钻研,细心推敲,不轻易问别人或急于求证得数。还要养成自觉检查、验算和有错必改的习惯。
教师还要加强书写格式的指导,规范的书写格式可以表达学生的运算思路和计算方法、步骤,防止错写漏写数字和运算符号。教师还要以身作则,作学生的表率。如:解题教学,审题在前,分析在后。思路清晰,层次分明;板书简明,重点突出。
培养学生良好计算习惯时,教师要有耐心,有恒心,要统一办法与要求,坚持不懈,一抓到底。
计算教学是一个长期复杂的教学过程,要提高学生的计算能力也不是一朝一夕的事,只有教师和学生的共同努力才有可能见到成效。这里提出我的几点方法,望同仁指正。
《对数函数及其性质》教学反思2
一、数学教学反思的内涵
反思“通常指精神的自我活动与内省的方法。”经验来自于两个方面:一是感觉,二是反思(反省)。反思是心灵以自己的活动作为对象而反观自照,是人们的思维活动和心理活动。
教学反思,是教师对自己参与的教学活动的回顾、检验与认识,本质上是对教学的一种反省认知活动。教师以自己的实践过程为思考对象,在“回放过程”的基础上,对其中的成败得失及其原因进行思考,得到一定的能用以指导自己教学的理性认识,并形成更为合理的实践方案。
从某种意义上说,教学是一种学术活动。教学反思是教师专业发展和自我成长的核心因素,实践+反思=成长。“经验之中有规律”。教师的反思能力决定着他的教育教学实践能力和在工作中开展研究的能力。如果教师对自己的教育教学实践缺乏反省,不对自己的教学经验进行概括,课堂教学实践后不反思,那么他们就很难成长为专家型教师。通过反思,教师不断更新教学观念,改善教学行为,提升教学水平,同时形成对教学现象、教学问题的深层次思考和创造性见解,使自己真正成为“研究型教师”。
二、数学教学反思的内容
明确数学教学反思的内容,这是进行教学反思的前提。理论上,任何与教学实践相关的问题都可能成为反思的对象和内容。但一般而言,教学设计与实施的比较、教学中的成败得失、教学机智与灵感、课堂互动情况以及课堂教学改革与创新等,是反思的主要对象。
通常,我们可以从不同角度来确定反思的内容。例如,根据教学活动的顺序,分阶段确定反思的内容;根据教学活动涉及的各种要素,确定反思的内容。当然,不同的角度之间一定会有交叉。另外,在反思的具体实施过程中,我们可以选择若干自己感受深刻的内容,有侧重地进行思考。
(一)根据教学活动顺序确定反思内容
1.对教学设计的反思
教学设计是课堂教学的蓝本,是对课堂教学的整体规划和预设,勾勒出了课堂教学活动的效益取向。设计教学方案时,教师对当前的教学内容及其地位(概念的“解构”、思想方法的“析出”、相关知识的联系方式等),学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都已经有一定的思考和预设。教学设计的反思就是对这些思考和预设是否与教学的实际进程具有适切性进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。
2.对教学过程的反思
我们知道,数学教学过程是学生在教师的指导下有目的、有意识、有计划地掌握数学双基、发展数学能力的认识活动,也是学生在掌握数学的双基、发展数学能力的过程中获得全面发展的实践活动.数学教学过程既包含教师的“教”,又包含学生的“学”,是教与学矛盾统一的过程.从“学”的角度看,数学教学过程不仅是在教师指导下学习数学知识、形成技能的过程,而且还是学生发展智力、形成数学能力的过程,也是理性精神和个性心理品质发展的过程.教学过程中,学生、教师、数学教学内容、教学方法、教学媒体、教学环境、校园文化等都是影响教学效果的直接因素,其中,教师、学生和教学中介是数学教学过程中的三个基本要素.教学中介是教学活动中教师作用于学生的全部信息,包括教学目标、教学内容、教学方法和手段、教学组织形式、反馈和教学环境等子要素,其中的主体是教学内容.对数学教学过程的反思就是对教学过程中各要素的相互作用过程及其效果的反思。具体可以从如下几个方面进行反思:
各教学环节的时间分配是否合理(特别要反思是否把时间用在核心概念和思想方法的理解和应用上);教学重点和难点的处理情况;是否启发了学生提问,学生提问的质量如何;问题是否恰时恰点,学生是否有充分的独立思考机会;核心概念的“解构”、思想方法的“析出”是否准确、到位;是否关注到学生的个性差异,学生活动是否高质高效,有没有“奇思妙想”、创新火花,有没有抓住这种机会;是否渗透和强调了数学能力的培养;教学内容的“价值观因素”是否得到充分挖掘,并用学生能理解的方式进行展示;教学媒体使用是否得当;教师语言、行为是否符合教育教学规律,学生有什么反应;各种练习是否适当;教学过程是否存在着“内伤”;等。
3.对教学效果的反思
对数学教学效果的反思,是指在教学活动结束后,教师对整个活动所取得的成效的价值判断,包括学生所获得的发展和教师自己的价值感受两个方面。前者主要考查学生的数学双基的掌握,数学能力发展,数学学习方法的掌握,数学的科学、人文价值的认识,以及理性精神的养成等诸方面;后者主要考察教师自己在教学活动中对教学内容和学生情况的了解程度的变化,个人教学经验的变化,实施有效教学能力的提升,教学思想观念的变化,等。其中,教学是否达到了预期的目标,学生行为是否产生了预期的变化,是教学效果反思的重点。
这是教师对自己教学活动的持续不断的反思过程,是教师专业化成长的必由之路。对个人经验的反思有两个层面,一是反思自己日常教学经历,使之沉淀成为真正的经验;二是对经验进行解释、归纳和概括,提炼出其中的规律,使之成为有一定普适性的理论。
没有经过教学反思的经验,其意义是有限的。如果教师只对个人经验作描述性的记录而不进行解释,那么这些经验就无法得到深层次解读,从而也就无法形成具有普遍意义的理论。只有对经验作出解释后,对经验的阅读才是有意义的。也就是说,形成经验的过程既是对经验的解释过程也是对经验的理解过程。在教学反思实践中,可以使用“反思档案”,其中包括:一是忠实记录并分析所发生的种.种情况,使之成为文本形式的经验;二是对文本经验本身不断加工和再创造,使经验得到升华,改善教师的理念与操作体系,甚至可以自下而上地形成新的教学理论。
(二)根据教学活动涉及的要素确定反思内容
从教学活动中涉及的要素角度,可以从如下几个方面确定反思内容。
1.数学方面
主要是在课堂教学活动后反思对数学内容的“解构”是否到位,并提出改进措施。因为本课题主要解决核心概念和思想方法的教学问题,因此主要反思概念的“解构”及其核心的确定是否到位,内容所反映的思想方法的“析出”是否准确,以及内容所反映的价值观内涵是否得到揭示。另外,还要通过对学生反映的分析,反观概念的核心、思想方法以及价值观内涵的呈现是否与学生的理解方式相匹配。
2.教的方面
主要是反思教师在与课堂教学相关的活动中的行为表现及其效果,并提出改进建议。包括教学目标的定位,重点难点的处理,教学阶段的划分与教学处理,教与学的方式,教学组织形式,问题情境的设置(与数学、生活或其它学科联系的背景),提问质量,师生互动,板书的设计,计算机等教学技术的运用,对教材内容的处理,课题的引进,课堂作业的布置,因材施教,小组活动的设计等。其中特别要注意反思是否围绕数学概念、思想方法开展教学活动以及落实情况。
3.学的方面
主要是反思学生在课堂中的行为表现,分析其成因,并据此提出教学改进建议,反馈到教学设计的改进中。具体包括对学生当前认知水平的分析和估计是否符合学生现状,学生对概念的本质、思想方法的理解状况及其原因,学生对课堂中某些关键性问题的反映(包括行为表现、语言表达等)及其原因分析,对课堂中学生思维活动特征的分析,对学生使用的问题解决策略的分析,对学生作业情况及其原因的分析等。
4.情感态度价值观方面
包括用与学生心理发展相适应的方式呈现内容的价值观内涵,课堂氛围的营造,教师与学生、学生与学生之间的感情沟通,数学学习兴趣的培养,对数学学习的认识与态度,学习动机与自信心,学生主动参与的程度等。
三、数学教学反思的步骤
具体进行教学反思时,要注意“不求全面,但求深刻”。通常可以按照如下步骤进行。
1.截取课堂教学片断及其相关的教学设计
截取的片断应该是与自己感兴趣的问题紧密相关的,描述了一个完整的教学事件。因此,为了更加真实地反映实际情况,需要我们事先对教学设计进行深入分析,从中析出自己感兴趣的问题,并在听课过程中有目的、有计划、有系统地对课堂中师生之间的相互作用过程进行仔细观察,包括活动的形式、内容和结果等,做出“全息纪录”,并要通过观看录像进行仔细核对。
有必要时,应当通过“追问”的方式,如“当时你是怎么想的?”“你为什么这样说?”等,向学生进一步搜集相关信息。
2.提炼反思的问题(案例问题)
案例问题是案例的灵魂,是反思活动的主要线索。这些问题不仅要围绕反思的主题,揭示案例中的各种困惑,更重要的是要有启发性,能够引发其他人的反思和讨论。因此,提炼反思问题时应注意:第一,围绕当前的课堂教学活动;第二,是被广大教师普遍关注的;第三,重要但容易被忽视的;第四,课堂教学改革中的疑难问题;第五,不同层次的教师能够参与讨论的;第六,可以与一定的理论相衔接的。
好的反思问题是那些能够引发大家思考和讨论的问题,是大家都“有话可说”的问题,而不是“最后能达成一致意见的问题”。
3.个人撰写反思材料
撰写反思材料时,应围绕自己感兴趣的反思问题。可以通过分析教师的教学和学生的课堂反映,即教师是怎么教的、学生是怎么说—想的,考察其中的利弊、得失,并进行原因分析,分析时应当有一定的理论高度,最后应当给出改进的方案。
4.集体讨论
讨论时应当有成员之间完全平等交流的氛围,各种意见应当得到充分表达,不同观点应当注意相互包容。讨论应当由忠实的原始记录。
5.个人再反思,并撰写反思论文。
在撰写论文时,除了对第3步写出的反思材料进行修改、完善外,还应对自己在整个活动中的“心路历程”也有所反应。
《对数函数及其性质》教学反思3
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统
一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.教具及软件运行环境说明 教具采用多媒体,黑板等形式展开
信息技术设备设置:通过借助计算机多媒体呈现指数函数与对数函数图像 应用环境及软件的说明:软件为在windows下运行的matlab7.0
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,利用几何作图软件运行各种指数函数及对数函数,通过比较/类比等方法使学生对对数函数的认识更加深刻。教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的
.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
四、教学目标
1、知识与技能,理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.
2、过程与方法,通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.
3、情感态度与价值观,通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的科学意识.
五、重点与难点
重点 :(1)对数函数的概念;(2)对数函数的性质.难点 :(1)对数函数与指数函数之间的关系.
六、过程设计及师生互动
(一) 复习导入
(1)复习提问:什么是指数函数?指数函数的图象和性质如何?
学生回答,并用课件展示 指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二) 讲授新课 (1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函
数
y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。
h(x)log2x,f(x)log3x,方法一(描点法)首先列出x,y(q(x)logx,g(x)logx)
1123值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,
8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再
演
示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和
性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从 p= 具体到抽象”的方法出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。
(三) 巩固练习 P42-P45
(四)纳小结强化思想
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。
七、教学评价方案
课堂教学是教学过程的中心环节,是教师和学生进行教学活动的主要形式,为了促进课堂教学改革,提高课堂教学质量,特制定本课堂教学评价方案: (1)、教学目标评价
教师能针对所教内容,结合《课程标准》科学、准确地设计教学目标,做到:
、目标明确,符合学生实际。目标的设置不可过高或过低。
2、“三维目标”全面、具体、适度,有可操作性,并能使知识目标,能力目标、情感、态度、价值观目标有机相融,和谐统一。
量化评价标准每项5分,总计10分。 (2)、教学内容评价
1、教师能准确把握所教学科内容的重点、难点,教授内容正确。
2、教学内容紧密联系学生的生活实际,激发学生去积极思维。
3、教师能从教学实际出发,转变教材观念,对教材进行科学有效的整合,以促进学生的学习,不唯教材,创新适用教材。
量化评价标准:第
1、2项各4分,第3项2分,总计10分。 (3)、教师行为评价
1、课堂上教师作为学生学习的组织者,是否能够有效地组织学生进行学习;作为学生学习的指导者,是否对学生的学习指导得有法、到位。培养了学生良好的学习习惯;是否创造了生动有趣的教学情境来诱发学生学习的主动性;作为学生学习的引导着,是否成为学生和课本之间的桥梁纽带,在教学活动中,发挥了自己的聪明才智和应有的作用;作为学生学习的合作者,是否能和学生一起学习,探究、倾听、交流。
2、教师能以学生为主体,重视知识的形成过程,重视学生学习方法的培养,重视学生的自学能力、实践能力,创新能力的发展。
3、课堂上能营造宽松、民主、平等的学习氛围,教态自然亲切,对学生学习的评价、恰当、具体、有激励性。
4、能够根据教材的重点、难点之处,精心设计问题,所提出的问题能针对不同层次的学生,问题的提出,恰到好处。能启发学生思考,促进学生知识的构建,并能给学生留有充分思考的时间,同时注重学生的“问题”意识,引导学生主动提出问题。
5、根据教学内容和学生实际,恰当地选择教学手段,合理运用教学媒体。
、课堂上,教师的讲解语言准确简练,示范操作规范,板书合理适用,教学有一定的风格和艺术性。
量化评比标准:第1项8分;第2项5分;第3项2分;第4项4分;第
5、6项各3分,总计25分。 (4)、学生行为评价
主要针对学生在课上的学习状态来评价。
1、看学生的学习状况,学生学习的主动性是否被激起,能积极地以多种感观参与到学习活动之中,精神振奋,有强烈的求知欲望。
2、看学生的参与状态,学生参与学习活动中的数量、广度和深度是衡量主体地位发挥的主要标志,学生要全员参与,有效参与。
3、看学生的学习方式。是否由被动学习变为主动学习,是否由个体学习到主动合作学习;是否由接受性学习变为探究性学习。
4、看学生在自主、合作、探究学习上的表现。 学生在学习过程中,是否全身心地投入、是否发现问题,提出问题,积极解决问题,是否敢于质疑,善于合作、主动探究并有实效,是否围绕某一问题彼此间能交流、讨论、倾听,提出有效建议。
5、看学生学习的体验与收获。 学生在学习过程中,90%以上的学生能够相互交流知识、交流、体会,交流情感由自悟——觉悟——感悟——醒悟,在获取丰富知识的同时形成了一定的学习能力。
量化评价评价标准:第1项8分;第2项3分;第3项6分;第4项8分;第5项2分;第6项8分,总计35分。 (5)、教学效果评价
1、看教学目标达成度如何,教师是否高度关注学生的知识 与能力、过程与方法、情感态度价值观的全面发展。
2、看教学效果的满意度,学生在教师的指导下,积极主动参与,90%以上的学生掌握了有效的学习方法,获得了知识,发展了能力,有积极的情感体验。
3、看课堂训练题设计,检测效果好。
量化评价标准:第1项4分;第2项7分;第3项4分。总计15分。 (6)、教学特色评价
教师在教学方式、方法上,知识的生成点上,教学机智与智慧上的闪光点,有不同寻常之处。
评价标准:具备上述中的某一点或几点评价。
分数:2---5分。
八、教学反思
在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的衔接及联系,形成知识框架,其次要了解学生认知规律,知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系。 1 要有明确的教学目标 2 要能突出重点、化解难点 3 要善于运用现代化教学手段 4 根据具体内容,选择恰当的教学方法 5 关爱学生,及时鼓励
6 充分发挥学生主体作用,调动学生的学习积极性
《对数函数及其性质》教学反思4
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统
一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
四、教学目标
1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. .
3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.
五、重点与难点
重点 :(1)对数函数的概念;(2)对数函数与指数函数的相互转化.难点 :(1)对数函数概念的理解;(2)对数函数性质的理解.
六、过程设计
(一) 复习导入
(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何? 学生回答,并用课件展示 指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二) 讲授新课 (1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数 y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。 设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。 教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再演 示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。 (3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从 p= 具体到抽象”的方法出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质, 认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。
(三) 巩固练习 1.求下列函数的定义域:
(1)ylog(5x)(2x3)
(2)ylogax2(3)ylg(4x)
2.利用单调性比较下列两个数的大小
loga12931loga129
32(四)纳小结强化思想
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。
《对数函数及其性质》教学反思5
对一名高中数学教师而言教学反思首先是对数学概念的反思。
1.对数学概念的反思——学会数学的思考
对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。
以函数为例:
●从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。
●从关系的角度来看,不仅函数的主要内容之间存在着种.种实质性的联系,函数与其他中学数学内容也有着密切的联系。
方程的根可以作为函数的图象与轴交点的横坐标;
不等式的解就是函数的图象在轴上的某一部分所对应的横坐标的集合;
数列也就是定义在自然数集合上的函数;
同样的几何内容也与函数有着密切的联系。
教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。
高中数学教学几点反思
从事高中数学教学工作已将两年了。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上40分钟的学习效率,这对于刚刚接触高中教学的我来说,是一个很重要的课题。要把握以下几点:①要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;②要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;③要处理好课堂教学中教师的教和学生的学的关系;④要把握教学课堂的气氛。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学,并在此基础之上自主去探究、发现问题、分析问题、解决问题。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂40分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再结合近几年的高考题型和本节的知识内容选择相关题目,往往每节课都涉及好几种题型。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来40分钟的内容在35分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、充分发挥学生主体作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。
在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。
7、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
8、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。