返回
首页 > 儿童教育

python绘图中的四个绘图技巧

时间: 2022-11-15 canyinms.com

   

技巧1: plt.subplots()

技巧2: plt.subplot()

技巧3: plt.tight_layout()

技巧4: plt.suptitle()

数据集:

让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:

import seaborn as sns # v0.11.2  
import matplotlib.pyplot as plt # v3.4.2  
sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load_dataset('tips')  
df.head()

技巧1: plt.subplots()

绘制多个子图的一种简单方法是使用 plt.subplots() 。

这是绘制 2 个并排子图的示例语法:

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))  
sns.histplot(data=df, x='tip', ax=ax[0])  
sns.boxplot(data=df, x='tip', ax=ax[1]);

在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。

 例如,我们可以像这样为每个子图添加标题:

fig, ax = plt.subplots(1, 2, figsize=(10,4))  
sns.histplot(data=df, x='tip', ax=ax[0])  
ax[0].set_title("Histogram")  
sns.boxplot(data=df, x='tip', ax=ax[1])  
ax[1].set_title("Boxplot");

在循环中将所有数值变量用同一组图表示:

numerical = df.select_dtypes('number').columnsfor col in numerical:  
 fig, ax = plt.subplots(1, 2, figsize=(10,4))  
 sns.histplot(data=df, x=col, ax=ax[0])  
 sns.boxplot(data=df, x=col, ax=ax[1]);
技巧2: plt.subplot()

另一种可视化多个图形的方法是使用 plt.subplot(),末尾没有 s

 语法与之前略有不同:

plt.figure(figsize=(10,4))  
ax1 = plt.subplot(1,2,1)  
sns.histplot(data=df, x='tip', ax=ax1)  
ax2 = plt.subplot(1,2,2)  
sns.boxplot(data=df, x='tip', ax=ax2);

当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:

plt.figure(figsize=(14,4))  
for i, col in enumerate(numerical):  
 ax = plt.subplot(1, len(numerical), i+1)  
 sns.boxplot(data=df, x=col, ax=ax)

我们同样能定制子图形。例如加个title

plt.figure(figsize=(14,4))  
for i, col in enumerate(numerical):  
 ax = plt.subplot(1, len(numerical), i+1)  
 sns.boxplot(data=df, x=col, ax=ax)   
 ax.set_title(f"Boxplot of {col}")

通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。

技巧3: plt.tight_layout()

在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,

如下所示:

categorical = df.select_dtypes('category').columnsplt.figure(figsize=(8, 8))  
for i, col in enumerate(categorical):  
 ax = plt.subplot(2, 2, i+1)  
 sns.countplot(data=df, x=col, ax=ax)

顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用plt.tight_layout很方便

plt.figure(figsize=(8, 8))  
for i, col in enumerate(categorical):  
 ax = plt.subplot(2, 2, i+1)  
 sns.countplot(data=df, x=col, ax=ax)   
plt.tight_layout()

专业 看起来更好了。

技巧4: plt.suptitle()

真个图形添加标题:

plt.figure(figsize=(8, 8))  
for i, col in enumerate(categorical):  
 ax = plt.subplot(2, 2, i+1)  
 sns.countplot(data=df, x=col, ax=ax)   
plt.suptitle('Category counts for all categorical variables')  
plt.tight_layout()

此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。

到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持好二三四!

猜你喜欢

版权所有 Copyright©2023 餐饮美食网 版权所有

粤ICP备15109582号

联系邮箱:hueiji88@gmail.com