梦见和好朋友在一起过生日,梦见有人帮我过生日
说明你希望多一些人的关注
那是我日夜思念深深爱着的人啊
到底他在何处流浪 让我心儿牵挂
快过年了 回家聚聚吧
梦见别人过生日,是吉兆,家人将会安康,并有意外之喜。
职员梦见别人过生日预兆现在的时机还不成熟,要三思。
女人梦见别人过生日则近期应坚韧自重,不能过分急进与妄动,时机一来运气逐渐好转。小不忍足以乱大谋,不可冲动冒然行事。
在金钱方面要多加小心;不要花无谓的钱,搞得囊空如洗
楼主,你好,这个是个好梦,预示着你衣食无忧,事事顺利,还有意外之财真心话
某公司的CEO面临着一个当代很普通的问题:裁员。
CEO对助理讲:“我们必须裁剪掉一半的员工,但是我很担心我裁掉的人会是对公司很有用的人才。你知道,这样的事情现在太多了。”
助理说:“没有问题。你不必亲自裁剪任何人。让他们自己解雇自己,那样他们就不会责怪你了。就让我来做吧。”
于是这名助理就逐个把雇员叫到办公室。他说:
“这有两个信封。一个里面装的是解雇通知书,另一个是续约合同书。”
他眨眨眼说:“你要做的是选出正确一个。”
“那我怎么知道哪个是哪个啊?”
“很简单,读一读信封上的字就知道了”
信封A:选我吧!我的里面装着续约合同书
信封B:我里面或者是另外一个信封的里面装着解雇通知书
助理说:“只有一个是正确的。”
假如你是雇员,你会选哪个?
第二天,CEO还是不满意。
“你找的10名员工做你的测试,他们全都选对了。我想你没有能够很好完成这件事。”
助理决定把测试做得更完善。他向雇员说,他有两个信封,两个都可能装着解雇通知书;或者都装有续约合同书;或者一个装有解雇通知书,一个装有续约合同书。他一手拿一个信封。如果左手拿着续约合同书,那上面的提示就是正确的;但如果里面是解雇通知书,那上面的提示就是错误的。右手拿着续约合同书,那上面的提示就是错误的;但如果里面是解雇通知书,那上面的提示就是正确的。
左手信封提示:你选择哪个信封都一样
右手信封提示:另外一个信封装有续约合同书
假如你是雇员,你会选哪个?为什么?
第三天CEO更加生气。
这次你选了20个员工做你的测试,结果都通过了。这对于我做出裁员决定毫无帮助。你必须把测试设计的更难些。”
助理想了一下:“剩下的员工都很聪明,即使他们中有一两个答错了,对于裁剪一半员工也没什么大作用。然而,有一个方法我还没有试过。”
“不管怎么样,赶快试。如果在明天股东大会结束前还没有结果,”CEO带点威胁的眼神说:“那我知道至少有一个人要被解雇。”
第二天会议上,助理起身向大股东介绍情况,并结尾说:
“目前我们的支出仍然是应有支出的两倍。可问题是,所有的员工都非常聪明,都没挑选解雇通知书。然而,各位股东可以看到,”助理指着原图分析图说:“单独的一个CEO的薪水就占据了整个支出的一半。”
CEO目瞪口呆。
“现在,我就要像收入最高的人提出难度最大的问题:请CEO来回答。”
股东们都同意。
“先生,我这里有三个信封。”
“三个!这不公平,其他人都是二选一的!”
“是的,是你告诉我要把测试做得更难一些。并且—”助理狡猾的眨了下眼睛:“你肯定比一般的职员要聪明50%,毕竟你的收入是他们的50倍呢。”
CEO怒目圆瞪,但一句话都说不出来。
“在这三个信封里,一个装有续约合同书,另两个装有解雇通知书。和以前的信封一样,在每个信封上都有一句话。最多一句是真的。”
信封A:这个信封里有解雇通知书
信封B:这个信封里有续约合同书
信封C:信封B中有续约合同书
那么你会选那个信封呢?为什么?
会议结束了,关于公司薪金支出问题得到了很好的解决,股东们都高兴的回家了。
最后的问题:这位CEO选出了正确的信封吗?
(提示:股东们对助理的解决方案十分满意,一是提拔他成为公司的CEO)
***************************************************************
一个罪犯必顺要在十分钟内过一条河到其它边境,不然被抓到就被处死。(他身上只有2毛,而且没有护照)
有三种过渡方试
1 搭船—渡过河刚好要十分钟,船费是2毛。(但罪不知道船上有没有人查护照)
2 过桥—从桥头走到桥尾刚好要十分钟,但要交建桥费5毛,桥尾收费员每隔五分钟睡五分钟(不用查护照)
3 游泳—游到河的另一头刚好要十分钟,不用交钱,别人很难发搅(但水流很急如果游泳有可能被水流冲走)
提示:保命第一,省钱第二,如果你是罪犯你要选那种~
*********************************************************
某著名企业的经典推理题!
一位教授把16张扑克牌放在桌上,如下;
黑桃 :A、7、Q
梅花: 3.4.7.9.J.Q
红心: 2.3.5.Q.K
方块: A.5
教授从中选出一张,把这张牌的数告诉了他的学生"甲”
把花色告诉了"乙”
然后教授问"甲”说"你知道是哪一张牌吗?
"甲”我不能确定是哪张牌
"乙”我知道你会这样说
"甲”现在我知道了
"乙”现在我也知道了
教授高兴的点点头.甲乙二人都是很有强的逻辑推理能力的人,并且都说了实话.
根据以上信息,通过你的推理告诉我这张牌
*********************************************************
1、水平思考法
有一家人决定搬进城里,于是去找房子。
全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。
他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。
这时,温和的房东出来,对这三位客人从上到下地打量了一番。
丈夫豉起勇气问道:"这房屋出租吗?"
房东遗憾地说:"啊,实在对不起,我们公寓不招有孩子的住户。"
丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开 了。
那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了? 他那红叶般的小手,又去敲房东的大门。
这时,丈夫和妻子已走出5米来远,都回头望着。
门开了,房东又出来了。这孩子精神抖擞地说:......
房东听了之后,高声笑了起来,决定把房子租给他们住。
问:这位5岁的小孩子说了什么话,终于说服了房东?
*****************************************************
2、篮球赛
在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6秒钟内再赢乙队4分,显然是不可能的了。
这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分?
*********************************************************
3、分油问题
有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份?
**********************************************************
4、第十三号大街
史密斯住在第十三号大街,这条大街上的房子的编号是从13号 到1300号。琼斯想知道史密斯所住的房子的号码。
琼斯问道:它小于500吗? 史密斯作了答复,但他讲了谎话。
琼斯问道:它是个平方数吗? 史密斯作了答复,但没有说真话。
琼斯问道:它是个立方数吗? 史密斯回答了并讲了真话。
琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。
史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。
但是,琼斯说错了。
史密斯住的房子是几号?
*********************************************************
5.不同部落间的通婚
故事讲的是许多年前欠完美岛上的一件婚事。一个普卡部落人 (总讲真话的)同一个沃汰沃巴部落人(从不讲真话的)结婚。婚后,他们生了一个儿子。这个孩子长大后当然具有西利撤拉部落的性格(真话、假话或假话、真话交替着讲)。
这个婚姻是那么美满,以致夫妻双方在许多年中都受到了对方性格的影响。讲这个故事的时候,普卡部落的人已习惯于每讲三句真话 就讲一句假话,而沃汰沃巴部落的人,则己习惯于每讲三句假话就要 讲一句真话。
这一对家长同他们的儿子每人都有个部落号,号码各不相同。他们的名字分别叫塞西尔、伊夫琳、西德尼 (这些名字在这个岛上男女 通用)。
三个人各说了四句话,但这是不记名的谈话,还有待我们来推断 各组话是由谁讲的 (我们想,前普卡当然是讲一句假话、三句真话,而前沃汰沃巴则是讲一句真话、三句假话)。
他们讲的话如下:
A:(1)塞西尔的号码是三人中最大的。(2)我过去是个普卡。(3)B是我的妻子。(4)我的号码比B的大22。
B:(1)A是我的儿子。(2)我的名字是塞西尔。(3)C的号码是54或78或81。(4)C过去是个沃汰沃巴。
C:(1)伊夫琳的号码比西德尼的大10。(2)A是我的父亲。(3)A的号码是66或68或103。(4)B过去是个普卡。
找出A、B、C三个人中谁是父亲、谁是母亲、谁是儿子,他们各自的名字以及他们的部落号。
************************************************************
6、环球旅行
有人开始环球旅行了。可是,在地球上怎样才算"环球"呢?我很茫然,主要是弄不清 "环球旅行"的定义。后来我就假设:"只要是跨过地球上所有的经度线和纬度线,就可以算环球旅行。"
那么请问,在这样的假设下,环球旅行的最短路程大概是多少公里?不过,解这个题时,为了简化,可以把地球看做是一个正圆球,周长是4万公里。
我的想法:太简单了,也许是我想的太简单了,考虑一下南北极所有经线相交的特殊性,然后顺着南北极随便找一条经线走一圈就OK了,这样就能把所有的纬线跨过,然后在两个极点的时候把所有经线跨过。4万公里就是答案了。
*******************************************************
7、"15点"游戏
乡村庙会开始了。
今年搞了一种叫做 "15点"的游戏。
艺人卡尼先生说:"来吧,老乡们。规则很简单,我们只要把硬 币轮流放在1到9这个数字上,谁先放都一样。你们放镍币,我放银元,谁首先把加起来为15的三个不同数字盖住,那么桌上的钱就全数归他。"
我们先看一下游戏的过程:某妇人先放,她把镍币放在7上,因为将7盖住,他人就不可再放了。其他一些数字也是如此。
卡尼把一块银元放在8上。
妇人第二次把镍币放在2上,这样她以为下一轮再用一枚镍币放在6上就可加为
8,于是她以为就可蠃了。但艺人第二次把银元放 在6上,堵住了夫人的路。现在,他只要在下一轮把银元放在1上就可获胜了。
妇人看到这一威胁,便把镍币放在1上。
卡尼先生下一轮笑嘻嘻地把银元放到了4上。妇人看到他下次放到5上便可蠃了,就不得不再次堵住他的路,她把一枚镍币放在5上。
但是卡尼先生却把银元放在3上,因为8+4+3=15,所以他蠃 了。可怜的妇人输掉了这4枚镍币。
该镇的镇长先生被这种游戏所迷住,他断定是卡尼先生用了一种 秘密的方法,使他比赛时怎么也不会输掉,除非他不想蠃。
镇长彻夜末眠,想研究出这一秘密的方法。
突然他从床上跳了下来,"啊哈!我早知道那人有个秘密方法,我现在晓得他是怎么干的了。真的,顾客是没有办法蠃的。"
这位镇长找到了什么窍门?你或许能发现怎么同朋友们玩这种 "15点"游戏而不会输一盘。
***************************************************************
9、尤克利地区的电话线路
直到去年,尤克利地区才消除了对电话的抵制情绪。虽然现在己 着手在安装电话,但是由于计划不周,进展比较缓慢。
直到今天,该地区的六个小镇之间的电话线路还很不完备。A镇同其他五个小镇之间都有电话线路;而B镇、C镇却只与其他四个小 镇有电话线路;D、E、F三个镇则只同其他三个小镇有电话线路。如果有完备的电话交换系统,上述现象是不难克服的。因为,如果在 A镇装个电话交换系统,A、B、C、D、E、F六个小镇都可以互相通话。但是,电话交换系统要等半年之后才能建成。在此之前,两个小镇之间必须装上直通线路才能互相通话。
现在,我们还知道D镇可以打电话到F镇。
请问:E镇可以打电话给哪三个小镇呢?
***************************************************
10,猜字母
S先生:让我来猜你心中所想的字母,好吗? P先生:怎么猜?
S先生:你先想好一个拼音字母,藏在心里。p先生:嗯,想好了。
S先生:现在我要问你几个问题。P先生:好,请问吧。
S先生:你所想的字母在CARTHORSE这个词中有吗? P先生:有的。
S先生:在SENATORIAL这个词中有吗?P先生:没有。
S先生:在INDETERMINABLES这个词中有吗? P先生:有的。
S先生:在REALISATON这个词中有吗? P先生:有的。
S先生:在ORCHESTRA这个词中有吗? P先生:没有。
S先生:在DISESTABLISHMENTARIANISM中有吗? P先生:有的。
S先生:我知道,你的回答有些是谎话,不过没关系,但你得告诉我,你上面的六个回答,有几个是真实的? P先生:三个。
S先生:行了,我已经知道你心中的字母是……。
*******************************************************
11、琼斯教授的奖章
琼斯教授在W学院开设 "思维学"课程,在每次课程结束时,他总要把一枚奖章奖给最优秀的学生。然而,有一年,珍妮、凯瑟 琳、汤姆三个学生并列地成为最优秀的学生。
琼斯教授打算用一次测验打破这个均势。
有一天,琼斯教授请这三个学生到自己的家里,对他们说:"我准备在你们每个人头上戴一顶红帽子或蓝帽子。在我叫你们把眼晴睁开以前,都不许把眼睛睁开来。" 琼斯教授在他们的头上各戴了一顶红帽子。琼斯说:"现在请你们把眼睛都睁开来,假如看到有人戴的是红帽子就举手,谁第一个推断出自己所戴帽子的颜色,就给谁奖章。" 三个人睁开眼睛后都举了手。一分钟后,珍妮喊道:"琼斯教授,我知道我戴的帽子是红色的。"
珍妮是怎样推论的?
********************************************************
12、猜帽问题
在众多的逻辑名题中,影响最广泛的,恐怕要数"猜帽问题"了。下面,举一个例子来说明这类问题的概貌。
有三顶红帽子和两顶白帽子。将其中的三顶帽子分别戴在 A、B、C三人头上。这三人每人都只能看见其他两人头上的帽子,但看不见自己头上戴的帽子,并且也不知道剩余的两顶帽子的颜色。
问A:"你戴的是什么颜色的帽子?" A回答说:"不知道。" 接着,又以同样的问题问B。B想了想之后,也回答说:"不知道。" 最后问C。C回答说:"我知道我戴的帽子是什么颜色了。" 当然,C是在听了A、B的回答之后而作出回答的。试问:C戴的是什么颜色的帽子?
有人说,这个问题的作者是诺贝尔奖金获得者、英国物理学家狄拉克。的确,狄拉克在他的著作中极力推崇这个问题。然而,实际上,远在狄拉克以前的年代,就有这种类型的问题了。不管这类问题的作者是谁,它都不失为逻辑题中的一个杰作,它将以永恒的魅力世世代代地流传下去。
这类问题,需预先加以规定:出场人物都必须依据正确的逻辑推理。以上题为例,c听了A和B的回答后,知道自己的帽子的颜色,这是以A、B的逻辑推理为前提的。如果A、B胡乱猜测或者智力不足,以致对问题作出了错误的判断,那么,C就不可能作出正确的答案。
***********************************************************
13、大女子主义村
它发生在一个地点不明的愚昧的大女子主义村子里。
在这个村子里,有50 对夫妇,每个女人在别人的丈夫对妻子不忠实时会立即知道,但从来不知道自己的丈夫如何。
该村严格的大女子主义章程要求,如果一个女人能够证明她的丈夫不忠实,她必须在当天杀死他。
假定女人们是赞同这一章程的、聪明的、能意识到别的妇女的聪明、并且很仁慈(即她们从不向那些丈夫不忠实的妇女通风报信)。
假定在这个村子里发生了这样的事:所有这50个男人都不忠实,但没有哪一个女人能够证明她的丈夫的不忠实,以至这个村子能够快活而又小心翼翼地一如既往。
有一天早晨,森林的远处有一位德高望重的女族长来拜访。她的诚实众所周知,她的话就像法律。她暗中警告说村子里至少有一个风流的丈夫。这个事实,根据她们已经知道的,只该有微不足道的后果,但是一旦这个事实成为公共知识,会发生什么?