根号下1-x^2的原函数 导数为根号下1-x^2的原函数
根号下1-x^2的原函数为:1/2(arcsinx+x√(1-x^2))。令x=sint,-π/2≤t≤π/2∫√(1-x^2)=∫costd(sint)=∫cos^2tdt=1/2∫(1+cos2t)dt=1/2(t+1/2sin2t)+C=1/2(arcsinx+x√(1-x^2))+C对1/2(arcsinx+x√(1-x^2))求导就得到根号1-x^2。
已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
原函数存在定理:
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。